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Diagonalization of System plus Environment
Hamiltonians

Dissipative behaviour in quantum physics can be modelled in a system plus
bath framework.'1} The quantum system that one is interested in is
described by a Hamiltonian Hs operating on the system Hilbert space 3FS,
the thermodynamically large environment by some Hamiltonian HB

operating on J^. The full Hamiltonian H: JVs®j>i?B^>J>ifs®J>ifB of system
plus bath is obtained by coupling #fs and J^B with some interaction HSB

Most theoretical work starts off by tracing out the bath degrees of freedom
and then using suitable approximation schemes for the time evolution of
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A new approach to dissipative quantum systems modeled by a system plus
environment Hamiltonian is presented. Using a continuous sequence of infini-
tesimal unitary transformations, the small quantum system is decoupled from its
thermodynamically large environment. Dissipation enters through the observa-
tion that system observables generically "decay" completely into a different
structure when the Hamiltonian is transformed into diagonal form. The method
is particularly suited for studying low-temperature properties. This is demon-
strated explicitly for the super-Ohmic spin-boson model.
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describing a two-level system coupled to a bath modelled by harmonic
oscillators. The standard approach to this problem is the "Non-Interacting
Blip Approximation" (NIBA) for the effective action obtained after inte-
grating out the bath degrees of freedom.'3' In our approach we find low-
temperature equilibrium correlation functions of the tunneling particle that
combine NIBA-results at intermediate time scales with the correct long-
time behaviour where the simple NIBA fails.'21 The universal Wilson ratio
for a super-Ohmic bath put forward in ref. 4 is also obtained.

Extension of our scheme to other dissipative quantum systems is
straightforward under the basic assumption that Hs has a non-degenerate
ground state separated by a finite gap from its excited states. More techni-
cal details of our method can be found in ref. 5. New results in this letter
are in particular the calculation of impurity contributions to the specific
heat and of universal Wilson ratios that were still open problems in ref. 5.

Two obvious questions arise with respect to the programme ( l ) - ( 2 ) .
Where is dissipation in Eq. (2) as exchange of energy between system and
bath is no longer possible? And how can one find a unitary transformation
U that fulfills the required task?

We first discuss the second point. The decoupling of system and bath
is achieved by a method of infinitesimal unitary transformations ("flow
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the reduced density matrix of the small quantum system (for a review see,
e.g., ref. 2). In this letter we present an alternative approach that aims at
decoupling system and bath with a unitary transformation U

Here Hs and HB are modified system and bath Hamiltonians. By carrying
out this programme in the manner described below this approach is par-
ticularly suited for studying low-temperature properties of dissipative quan-
tum systems, thereby being complementary to most other approximation
schemes.

For a finite system a transformation U as in (2) will always exist.
Let us already mention, however, that a subtle problem can occur in the
thermodynamic limit regarding the interpretation of the eigenstates of
HS®^B- We postpone this point until later when we discuss correlation
functions.

As a specific example we demonstrate these ideas for the spin-boson
model



solved. The parameter / has dimension (Energy) 2. Equation (4) generates
a one-parameter family of unitarily equivalent Hamiltonians H(f). In the
limit f -> oo one attempts to obtain a Hamiltonian H(l = oo) of the simple
structure (2) . The choice of rj(f) is inspired by renormalization theory:
Initially for small / matrix elements corresponding to large energy differen-
ces between system and bath are decoupled, for large t one deals with the
nearly resonant modes. The fundamental problem of (4) is that higher and
higher order interactions are successively generated. So a further condition
for r\((} is that the number of additional terms should be small. Finally
ri(f) must commute with symmetry operators of the initial problem, so that
//(/) has the same symmetries as //(O). These conditions essentially fix a
unique structure of q(f)

with

All parameters in (6) depend on / and normal-ordering with respect to the
non interacting ground state has been introduced. For the construction of
generators r\ in a general setting see refs. 5, 6. The only new interaction
terms generated in the first application of (4) is '.ax(bk + b\)(bv±b\,}:,

Due to the flow the spectral function J((a) = Y.k k.2kd((» — <jok) describ-
ing the coupling of system and bath becomes Adependent too, J(co, f) =
Y.k kk(S)2d((a—(ok), J(ca, f = Q)=J(co). We end up with the following set
of differential equations for the couplings in the Hamiltonian by comparing
the Ihs and rhs of (4)

3 Similar ideas have recently also been introduced in high-energy physics by Gla/ck and
Wilson17' tor the investigation of bound states in light-front QCD.

equations") introduced by Wegner in ref. 6.3 A suitable antihermitean
generator r/(f)= — ̂ ( / )T is chosen and the initial-value problem
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and a differential equation for an uninteresting additive term in (3) corre-
sponding to the ground state energy. The differential equation for the higher
normal-ordered interaction term '.ax(bk±b*k)(bk,±b]c,)\ is subsequently
neglected. This approximation can be systematically improved by taking
such higher-order interactions that are also of higher order in the small
parameters Xk into account one after the other in the hierarchy of differen-
tial equations. However, already the above approximation leads to a very
satisfactory description as will be shown.

As required large energy differences are first decoupled in (8) and
small energy differences later. For /->oo the coupling J(ca,f) vanishes
for all u>, in general exponentially and for « = //(/= 00) algebraicall.
Within the above approximations one ends up with a system Hamiltonian
Hs= —1/2 Arax that is decoupled from the environment. Here Ar-
A(f — oo) is the renormalized tunneling matrix element. By either numeri-
cal solution of the differential equations or analytical approximations one
finds Ar = cA0e\v(-(<acIKY~ /(2s-2)) for a super-Ohmic bath J(co) =
Kl~sa>s9(a>c — (a) with s>\. Here z(0 = /f(/ = 0), c is a constant of order 1,
a)c some high-energy cutoff and K the coupling constant. Ar defines the
low-energy scale of the problem in agreement with other methods (see, e.g.,
ref. 3).

For small /f«d~2 the above procedure is equivalent to Anderson's
"poor man's" scaling'8' with a smooth cutoff, except that the high-energy
states are not removed by integrating them out but by decoupling them
using unitary transformations (see Fig. 1). By explicitly finding this unitary
transformation no information about the removed states is lost but con-
tained in the unitary transformation itself.4 Scaling approaches have to
stop when the effective band edge becomes of order the low-energy scale of
the problem due to divergencies in the renormalization group equations.
The flow equations can be integrated further since with our choice of tj(tf)
decoupling is with respect to energy differences and does not only take
place at the effective band edge.

4 In principle it is possible to reconstruct the full unitary transformation Um (2) by evaluating
/-ordered products of r\(f], but the differential approach is more appropriate.
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In the region f>Ar
 2 that remains unreachable in the "poor man's"

approach new features appear that are hidden for smaller f. First of all the
flow of the parameters in the Hamiltonian becomes negligible and has a
universal algebraic /-dependence f ~ "2. In contrast the transformation of the
system observables turns out to be essential in this regime. In the crossover
region / % /),72 both flow of parameters and system observables are important.

As a specific example for this scenario we discuss the symmetrized
equilibrium correlation function describing the tunneling particle C(t) =
|< { a , ( t ) , ff.(Q)} >. In order to use the trivial time evolution with respect to
the Hamiltonian H(f = oo) we have to transform the observable a. as well

These differential equations cannot be solved in closed form and we have
to make an ansatz for the transformation of a,(f)

where higher normal-ordered terms are neglected. One obtains the following
differential equations

Fig. 1. Schematic behaviour of the elTective spectral function J(co, f} lor various regimes of
the flow equations.



becomes equivalent to a two-state system as the mean occupation number
< Z > f & > of the dissipative harmonic oscillator at zero temperature goes to
zero with the width of the spectral function. The corresponding set of differ-
ential equations (7, 8, 11, 12) for the dissipative harmonic oscillator can be
solved in closed form.(5) This solution is exact as no higher-order terms in the
Hamiltonian or the transformation of observables appear. Formally this can
be seen by introducing functions S0(~,/e) = '£kaikAl/(: — col), Sl(:,f) =
I* \/cM#*4/(--«*), S2(z<f) = j^kxll(:-w2k) and by showing
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One can prove h(( = oo) = 0 if A,, lies in the support of J(ca). Therefore
CTZ(/) in (10) decays completely under the sequence of unitary transforma
tions, which is essential to see dissipative behaviour with a Hamiltonian
like (2). In general one can show for a system observable 0® 1B that does
not commute with the algebra spanned by [HS®^B, HSB]: If some excita-
tion energy from the ground state of Hs lies in the support of the spectral
function then the observable decays completely when transforming from
(1) to (2) in the sense that no such term of structure 0 ® H B survives.(5)

This result also holds in the zero-temperature limit.
In fact these properties of the observables are related to the problem

mentioned below Eq. (2): The right hand side of Eq. (2) can contain discrete
eigenstates embedded in the continuum generated by HB in the thermo-
dynamic limit. This is known to be wrong.(9) In order to resolve this
problem one has to investigate the eigenstate corresponding to the embedded
eigenvalue when it is transformed back to / = 0. One observes that this
eigenstate decays completely into a sum of bath states. The weights of these
bath states vanish in the limit /' -»0 for a thermodynamically large system.
Therefore this state has to be excluded from the space of physical states. We
have seen above that this unphysical state does not show up in the correla-
tion functions calculated using the transformed operators anyway, so we can
ignore this point in the sequel. In general one has to be cautious since the
thermodynamic limit and the limit t -> oo do not generally commute.

The one-sided Fourier transform C(co) of the correlation function
C(t) = \^ da> C(co) cos(cot) can be expressed as C(co) = ̂ k xj^oo) x
coth(fia>k/2) S(a> — (ok) and the ^(oo) have to be found numerically. This
is simplified by the following observation. For / -> oo the remaining
spectral function J(a>,£) is strongly peaked around Ar (Fig. 1). In this limit
the exactly solved dissipative harmonic oscillator110)
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For the dissipative harmonic oscillator (13) holds exactly without the
term O(/0"'). Numerically the correlation function C(co) = — 2co/n
J- x S2(w2 — iO + , co) has been obtained by integrating the flow equations
up to some /0 = (2AJr)~2 , A « l , thereby obtaining S2(:,S0) and then
adding the second term from (13) that describes a dissipative harmonic
oscillator with the spectral function J(a>, /0). Therefore the resolution of the
peak in C(co) for co — A,, is not limited by tV''2- By using the analogy with
the dissipative harmonic oscillator we are restricted to low temperatures
r«4,..

Some zero-temperature correlation functions obtained in this manner
are shown in Fig. 2. The final results vary very little with A as long as
X < 0.5. This gives a posteriori justification of our approximations. For
/«/f,T2 the neglected terms are irrelevant in the usual scaling sense, for
fy>A~2 our equations are closed due to the analogy with the dissipative
harmonic oscillator. As the final results for super-Ohmic baths do not
depend on where these two parts are matched in the crossover region, it is
reasonable to argue that the approximations are also good for f % d~2.5

The correlation functions obtained for such parameters are in good
agreement with the NIBA for intermediate time scales (Fig. 2). That is for
co % A,, the curves are well-described by a Lorentzian with a peak at co = A,.

5 For an Ohmic bath J(ia) x ui with intermediate and strong coupling the final result for C(«j)
depends on /.. This is due to our simple choice of ^A.,, that generates an IR-problem for
Ohmic baths.151 Hence we restrict ourselves to super-Ohmic baths in this letter.
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Fig. 2. Exemplary correlation function for a super-Ohmic bath (s — 2, ^ = 40, cy, =80). The
different curves are obtained by using Eq. (13) for various values of /0 = (2AJr ) 2. The scale
is set by 4u=l. For comparison the NIBA-curve is also shown. The maximum of the NIBA-
curve is slightly shifted with respect to the flow equations and has been suitably rescaled in
order to identify the peaks.
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and half width n/2J(Ar).6 For long times the NIBA fails as it predicts an
exponential decay at r=0,(3) whereas the long-time behaviour is known to
be determined by the low-frequency behaviour of the spectral function.
This is made explicit in the Shiba-relation(11) generalized to super-Ohmic
baths in ref. 4 (note our normalization j" C(co) dca= 1)

with the static susceptibility Xo- %0 can be extracted with a Kramer's-Kronig
relation and a fluctuation-dissipation theorem #0= 1/2 J™ C(co)/(o dco. The
numerical solution of the flow equations is in excellent agreement with the
Shiba-relation (Table I). One observes only small deviations that disappear
in the limit wc» A0, Ar = const, (or a>c/K = const). For an Ohmic bath
the Shiba-relation was recently verified numerically by Costi and Kieffer
using Wilson's numerical renormalization group method.(12)

6 This can also be shown analytically by an approximate solution of the set of differential
equations, see ref. 5.

Table 1. Representative Results from the Numerical Solution of the
Flow Equations for Super-Ohmic Baths J(w) = K*~*w*Q(iac-(a)a

s

2
2
2
2
2
2
2
2
2
3
3
3
3
3
3

a>c

80
160
320
80

160
320

80
160
320
20
40
60
10
20
30

K

40
80

160
20
40
80
10
20
40
10
20
30

3.33
6.67

10

Xo

1.31
1.34
1.35
3.40
3.54
3.62

22.6
24.7
25.9

1.26
1.31
1.33
3.52
3.71
3.98

[CMMJ] I"  CM 1

[yMJyM,-,<>J  «,-,<> |_(2*°)2-/(W)_U

7.12 1.04
7.24
7.31

47.4
50.6
52.5

2.05 x 103

2.45 x 103

2.69 x 103

6.68
6.93
7.05

52.4
55.8
63.8

.01

.00

.03

.01

.00

.01

.00

.00

.05

.01

.00

.06

.01

.01

R,
-0

0.370
0.182
0.090
0.734
0.363
0.180
1.43
0.718
0.359
0.786
0.194
0.0858
7.39
1.78
0.783

y^(theor)

0.361
0.180
0.090
0.721
0.361
0.180
1.44
0.721
0.361
0.779
0.195
0.0866
7.03
1.75
0.779

"The scale is set by <40= 1. /^llleor> is the Wilson ratio from (18). Numerical errors for the
Shiba and the Wilson ratio are estimated as 2%.



Another interesting low-energy property is the impurity contribution
to the specific heat c t ( T ) . This quantity is trivial to obtain from a
Hamiltonian like (2). But it follows from the difference of two extensiv
quantities and it becomes necessary to discuss the flow equations for the
bath energies too. That could be ignored before since the couplings kk scale
with l/^/N where N is the number of bath modes. One finds

For super-Ohmic baths J(a>)accos for small u>, s>l, one derives the
following expression for the impurity contribution to the specific heat
c, = dEi/dT

Wilson ratios obtained from the numerical solution of the flow equations
can be found in Table I. Agreement with (18) is excellent in the limt
coc»/J0, Ar = const.

Summing up, we have applied a new approximation method based on
infinitesimal unitary transformations(6) to the spin-boson model. The
method is an extension of "poor man's" scaling'8' as it allows to decouple
modes below the low-energy scale of the model. Instead of renormalization
group equations with respect to the effective band width we have differen-
tial equations with respect to energy differences parametrized by t. An
essential new feature as compared to the scaling approach is the transfor-
mation of the observables once the decoupling has reached the low-energy
scale. Thereby we have successfully matched formal solutions'4' yielding the

with g(f) defined from J(co, /) = g(f) cos + O(cos + l). In particular the
impurity contribution to the specific heat is not Schottky-like but scales
as Ts. A sensitive test is provided by the Wilson ratio R, = \\mT^0c,(T)l
(Xo Ts) also generalized to super-Ohmic baths in ref. 4

and the impurity contribution to the internal energy for T«Ar is simply
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Shiba-relation and universal Wilson ratios with the well-established NIB A
at intermediate energies in one consistent scheme.
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